Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 52, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184723

RESUMO

Patients with idiopathic pulmonary fibrosis show a strongly upregulated expression of chemokine CXCL14, whose target is still unknown. Screening of CXCL14 in a panel of human G protein-coupled receptors (GPCRs) revealed its potent and selective activation of the orphan MAS-related GPCR X2 (MRGPRX2). This receptor is expressed on mast cells and - like CXCL14 - upregulated in bronchial inflammation. CXCL14 induces robust activation of MRGPRX2 and its putative mouse ortholog MRGPRB2 in G protein-dependent and ß-arrestin recruitment assays that is blocked by a selective MRGPRX2/B2 antagonist. Truncation combined with mutagenesis and computational studies identified the pharmacophoric sequence of CXCL14 and its presumed interaction with the receptor. Intriguingly, C-terminal domain sequences of CXCL14 consisting of 4 to 11 amino acids display similar or increased potency and efficacy compared to the full CXCL14 sequence (77 amino acids). These results provide a rational basis for the future development of potential idiopathic pulmonary fibrosis therapies.


Assuntos
Quimiocinas , Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Aminoácidos , Bioensaio , Quimiocinas CXC , Fibrose Pulmonar Idiopática/genética , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos
2.
EJNMMI Res ; 7(1): 68, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28831764

RESUMO

BACKGROUND: In Parkinson's disease (PD), cerebral dopamine depletion is associated with PD subtype-specific metabolic patterns of hypo- and hypermetabolism. It has been hypothesised that hypometabolism reflects impairment, while hypermetabolism may indicate compensatory activity. In order to associate metabolic patterns with pathophysiological and compensatory mechanisms, we combined resting state [18F]FDG-PET (to demonstrate brain metabolism in awake animals), [18F]FDOPA-PET (dopamine depletion severity) and gait analysis in a unilateral 6-hydroxydopamine rat model. RESULTS: We found unilateral nigro-striatal dopaminergic loss to decrease swing speed of the contralesional forelimb and stride length of all paws in association with depletion severity. Depletion severity was found to correlate with compensatory changes such as increased stance time of the other three paws and diagonal weight shift to the ipsilesional hind paw. [18F]FDG-PET revealed ipsilesional hypo- and contralesional hypermetabolism; metabolic deactivation of the ipsilesional network needed for sensorimotor integration (hippocampus/retrosplenial cortex/lateral posterior thalamus) was solely associated with bradykinesia, but hypometabolism of the ipsilesional rostral forelimb area was related to both pathological and compensatory gait changes. Mixed effects were also found for hypermetabolism of the contralesional midbrain locomotor region, while contralesional striatal hyperactivation was linked to motor impairments rather than compensation. CONCLUSIONS: Our results indicate that ipsilesional hypo- and contralesional hypermetabolism contribute to both motor impairment and compensation. This is the first time when energy metabolism, dopamine depletion and gait analysis were combined in a hemiparkinsonian model. By experimentally increasing or decreasing compensational brain activity, its potential and limits can be further investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...